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Supplementary Figure 1 The inputs, internals, and outputs of the “BayesOpt” box from
Fig. 3 in the main text. We show the Gaussian Process (GP) approximation of the posterior
distribution Pr(S,R | I): snapshots at selected iteration numbers given the observed image
I on the left. Rows show the GP estimation for each of three angular rotation parameters
specifying object pose, as well as the shape parameter (see Materials & Methods; the x-axes
show the full range of values each parameter can take, normalized to lie between 0 and 1).
Each plot displays the mean (black line) and the uncertainty of the GP approximation of
the posterior (orange shading showing 2 standard deviations) and the true posterior score
(black line with blue shading), as a function of the indicated parameter, with all other latent
variables set to ground truth (except for the shape, which is set to the nearest neighbor,
S1). (Notice that due to the stochasticity of the physics simulator, the true posterior score
is a random variable; the shaded blue regions show standard deviation taken across multiple
evaluations of the synthesis module). The GP approximation is initially poor (iteration #15),
but rapidly improves. At each iteration, the Expected Improvement acquisition function
chooses a new point to sample and evaluate according to this posterior estimate, by making a
trade-off between the GP mean and covariance (see Materials & Methods). The blue dots on
each panel show posterior evaluations for selected parameter values. Notice that the number
of evaluated samples grows with the number of iterations.
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Supplementary Figure 2 Accuracy levels of the three models we considered including
pretrained versions (top row) and after finetuning (bottom row). AlexNet results are pre-
sented in the main text.
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Supplementary Figure 3 Behavioral results. (a) Average human accuracy in the 3 pre-
sentation time conditions pooling data across the occlusion conditions. Overall, participants
performed well above chance under all presentation time conditions. Behavioral accuracy
improved with longer presentation times: 1 sec vs. 2 secs t(51) = −3.187, p = .002; 2 secs
vs. Unlimited t(52) = −3.049, p = 0.003, 1 sec vs. Unlimited t(51) = −6.404, p < .001,
two-tailed independent samples t-tests. (Using independent samples of participants for each
bar: 1-sec n = 53; 2-secs n = 55; Unlimited n = 54.) (b) Average human accuracy
shown separately for each occlusion and presentation time condition. Participants’ aver-
age performance ranged from 73% in the cloth-occluded condition under 1 sec presentation
time to 93% in the unoccluded condition under unlimited time. The gain in performance
was significant within each occlusion condition for all pairwise comparisons of presenta-
tion times: Unocc 1 sec vs. 2secs t(27) = −3.921, p < 0.001; Unocc 2 secs vs. Unlimited
t(27) = −3.142, p = 0.003; Unocc 1 sec vs. Unlimited t(27) = −6.378, p < .001; Occ 1 sec
vs. 2secs t(22) = −2.379, p = .022; Occ 2 secs vs. Unlimited t(23) = −2.246, p = .029;
Occ 1 sec vs. Unlimited t(22) = −4.459, p < .001, two-tailed independent samples t-tests.
(Using independent samples of participants for each combination of presentation time and
occlusion condition: 1-sec Unoccluded n = 29; 1-sec Occluded n = 24; 2-secs Unoccluded
n = 30; 2-secs Occluded n = 25; Unlimited Unoccluded n = 29; Unlimited Occluded
n = 25) (c) Average response times (in milliseconds; pooling data across the occlusion
conditions) lengthen with longer presentation times, p < .001 for all pairwise compar-
isons of presentation time conditions: 1 sec vs. 2 secs t(51) = −5.616, p < .001; 2 secs
vs. Unlimited t(52) = −4.121, p < 0.001; 1 sec vs. Unlimited t(51) = −8.121, p < .001,
using two-tailed independent samples t-tests. (Using identical samples of participants as
panel a.) (d) Average response times shown separately for each occlusion and presentation
time condition. Lengthening of response times is still evident for each occlusion condition
for all pairwise comparisons of presentation times (except in the 1 sec vs. 2 secs compar-
ison in the unoccluded condition and 2 secs vs. Unl. comparisons in the cloth-occluded
condition): Unocc 1 sec vs. 2 secs t(27) = −1.749, p = 0.086; Unocc 2 secs vs. Unlimited
t(27) = −4.410, p < .001; Unocc 1 sec vs. Unlimited t(27) = −4.874, p < .001; Occ 1 sec vs.
2secs t(22) = −6.732, p < .001; Occ 2 secs vs. Unlimited t(23) = −1.585, p = .120; Occ 1
sec vs. Unlimited t(22) = −7.723, p < .001, two-tailed independent samples t-tests. (Using
identical samples of participants as panel b.) Error bars show standard deviation. In panels
(c) and (d), gray dots show the median, and thick black lines extend between the 25 and
75% percentile of the distribution.
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Supplementary Figure 4 Average of the bootstrapped trial-level accuracy correlations
in the (a) 2 secs presentation time condition and (b) 1 sec presentation time conditions.
The physics-based analysis-by-synthesis (PbAS) model correlates well with behavior across
all presentation time and occlusion condition time conditions, relative to the alternatives
based on bottom-up features optimized for image classification (BU: bottom-up network with
pretrained weights from ImageNet dataset; FT: fine-tuned networks, separately fine-tuned
for each occlusion conditions) and Pixel-PbAS, an ablation of PbAS without the bottom-up
image encoding modules (using pixels directly for likelihood computation). “***”: p < .001;
“*”: p = 046; “n.s.” = .242. Error bars indicate bootstrapped 95% confidence intervals.
Statistical comparisons are performed using two-tailed direct bootstrap hypothesis testing
(n = 5000 bootstrap samples by sampling participants with replacement).
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Supplementary Figure 5 Average of the bootstrapped trial-level accuracy correlations
for the difficult, same category trials in the (a) Occluded and (b) Unoccluded conditions.
Results are arranged by model type and stimulus presentation time. Error bars show boot-
strapped 95% confidence intervals (n = 5000 bootstrap samples by sampling participants
with replacement). In the easier unoccluded, shape-category conditions, all three models
that use DCNN features to match images (PbAS, BU, and FT) perform similarly across all
presentation times; Pixel-PbAS performs significantly worse across all presentation times. In
the more difficult occluded, same-category conditions, PbAS clearly outperforms all other
models, except for BU which performs similarly in the shortest (1 sec) presentation time.
Notably both pure DCNN models, BU and FT, consistently correlate less well with human
trial-level accuracies as presentation times increase, while PbAS correlations tend to increase,
and FT correlations are not significantly different from zero in the challenging occluded
same-category conditions (with BU correlations being only barely higher than zero in the 2
sec and unlimited conditions). This overall pattern is consistent with the success of DCNNs
at capturing the rapid feedforward contributions to human object recognition for familiar
stimuli viewed under standard conditions, and strengthens our proposal that more challeng-
ing viewing conditions and longer processing times engage top-down, iterative, generative
model based computations of the form instantiated in PbAS. The combination of physics-
based analysis by synthesis with DCNN features for matching generative model simulations
to images, as instantiated in the full PbAS model but not Pixel-PbAS, is the only model
that accounts well (and better than or equal to any other model) for all stimulus conditions
and all presentation times.
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Supplementary Figure 6 Behavioral learning curves in the two occlusion conditions.
We show moving window averages (window size=10) of human accuracy levels in the two
occlusion conditions (solid lines; red=Unoccluded, green=Occluded) under the unlimited
presentation time condition. We find no evidence of learning throughout the experiment.
Shaded region shows standard error.

Supplementary Figure 7 Divergence between the Pixel-PbAS model (i.e., using pixels
for likelihood without bottom-up image encoding) and human performance at each model
iteration. Colored lines show ℓ2 distance between this model and human accuracy for all
trials in indicated presentation time condition. Colored triangles indicate the best matching
iterations for each presentation time condition. This model asymptotes at a larger distance
to behavior than the PbAS model.
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Supplementary Figure 8 Correlation between a model’s average accuracy (x-axis) and
its trial-by-trial correlation to behavior (y-axis) – shown for all models (4 models [PbAS,
Bottom-up, Fine-tuned, Pixel-PbAS]) and experimental condition (6 conditions), resulting in
24 data points. We see that overall, there is a medium-strength positive correlation between
the accuracy of a model and its trial-by-trial consistency with behavior (p = .005). This
observation motivates future work to develop more performance-matched models (similar to
the Pixel-PbAS model) and use behavior to adjudicate among them.
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Supplementary Figure 9 Evaluating the pretrained and fine-tuned models on response
time data. (a) Comparing the number of network layers (log #) needed to reach a decision
threshold in the pretrained bottom-up network vs. average human response times (log ms).
We model response times using the network layer at which a decision threshold has been
reached. To implement this proposal, we go through the network layers conv1, conv2, conv3,
conv4, conv5, and fc1 in the pretrained bottom-up network, and make a decision as soon
as the ratio corrm/(corrm + corrd) exceeds a certain threshold. The resulting correlations
(unoccluded: r = .25; occluded: r= .23) are significantly lower than the correlations due to
PbAS (p < .001; using direct bootstrap hypothesis testing), even though PbAS has no free
parameters. To give the most favorable setting possible for the pretrained model, these results
are based on the decision threshold that maximized these correlations: for these results, we
make a decision when corrm/(corrm+corrd) >= .57. (b) Comparing the number of training
epochs (log #) required for the average accuracy of the 32 fine-tuned models to reach a
decision threshold, vs. average human response times (log ms). This method focuses on the
fine-tuned models and exploits the fact that we train the networks for 200 epochs during fine-
tuning. We treat the training epochs much like the number of iterations in PbAS and make a
decision at a given training epoch as soon as the average of the 32 fine-tuned models reaches
average human accuracy in a given condition. This resulting correlations (unoccluded: r
= .58; occluded: r = .53) are lower than that of the PbAS model (p < .001; using direct
bootstrap hypothesis testing). Moreover, this relationship is largely categorical: The fine-
tuned models require fewer training epochs in the easier different-category trials (red dots)
and often take until the final training epoch in the harder same-category trials (blue dots).
In contrast, the number of inference steps in PbAS correlates with behavioral response times
in a much more graded manner (see Fig. 6 in the main text). Shaded regions show 95%
CIs of the standard error in linear regressions (solid lines); the confidence intervals around
the correlation values on top of each plot are bootstrapped 95% CIs based on resampling
participants with replacement (n = 5000 bootstrap samples).


